

Lehrstuhl für Physik

Department Physik, Mechanik und Elektrotechnik Montanuniversität Leoben

A-8700 LEOBEN, Franz Josef Straße 18, Austria Tel: +43 3842 402-4601 e-mail: physics@unileoben.ac.at

S E M I N A R on Semiconductor Physics and Nanotechnology

DEFENSIO:

Fr, 21.11.2025, 14:00 Uhr,

in person in the Physics lecture hall or via Zoom

"Two-dimensional Phyllosilicates as an Air-stable Platform for Layered Magnetic Materials"

Muhammad Zubair Khan, M.Sc.

Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Technical University of Leoben, Austria

Since the discovery of graphene, intrinsic magnetic ordering in two-dimensional (2D) materials remained challenging, prompting approaches such as proximity effects, defect engineering, and doping. Intrinsic 2D ferromagnetism was first observed in chromium-based compounds, but their poor ambient stability and cryogenic ordering temperatures limit practical use.

Phyllosilicates offer a promising alternative as naturally occurring, ambient-stable layered materials that host magnetic ions via Mg substitution in the octahedral site. Studies of iron-rich phyllosilicates show that the presence of mixed Fe²⁺/Fe³⁺ states enhance magnetic ordering. The visualization of magnetic domains and layer-dependent ordering in 2D phyllosilicates using scanning SQUID microscopy, reveal intrinsic A-type in-plane anti-ferromagnetic ordering.

The work also focus on the developing scalable approach to induce room-temperature ferromagnetism in phyllosilicates through broad-beam ion implantation, enabling new pathways to fabricate ambiently stable 2D magnetic insulators with tunable magnetic properties.