Header Bild

Institute of Physics

News

15.05.2019

Visualization of different domains in bulk heterojunction solar cells by atomic force microscopy

In cooperation with scientists of the National Academy of Sciences of the Ukraine and Slovakia we have demonstrated that differently doped atomic force microscopy probes can be used a submicrometer electrodes to probe and discriminate different semiconductor domains in CdS/Kesterite bulk heterojunction solar cells.

Abstract:

Visualization of functionally different domains in bulk heterojunction (BHJ) solar cells is of paramount importance to understand the routes of optimization of their structure for best performance. In this work, a concept of detecting n-type and p-type semiconductor domains in BHJ structures by methods based on atomic force microscopy (AFM) is proposed. It assigns an active role to the semiconducting coating of the AFM probe tip which is able to form different junctions, i.e., p-n anisotype or p+-p, n+-n isotype, with the surfaces inspected. Here, we illustrate this concept on the example of BHJ structures composed of the n-type inorganic microcrystalline semiconductor CdS and mechanochemically prepared p-type kesterite nanopowder and two types of AFM probe tip coatings, i.e., p-type boron-doped diamond and n-type nitrogen-doped diamond coating, respectively. Conductive AFM (CAFM) measurements demonstrated unequivocally the different diode behavior when contacting n- or p-type semiconductor domains in the BHJ structures. Simulation of the energy level alignment at the probe-sample interfaces allowed us to explain the formation of anisotype or isotype junctions depending on the sample domain and probe used. Kelvin probe force microscopy measurements were consistent with the CAFM results and indicated the different contact potentials from the diverse types of domains in the BHJ structure.

Link to article: https://aip.scitation.org/doi/abs/10.1063/1.5082636

Nach oben