Layer-Dependent Magnetic Ordering in Natural 2D Magnetic Insulators
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Motivation

Magnetic monolayers show great promise for future applications in nanoelectronics, data storage and sensing. Especially for the applications in magentoresi-
stive tunneling junctions, 2D magnetic insulators are very attractive material candidates. They enable atomically sharp interface and preservation of long range
magnetic ordering down to monolayer thickness. While the research mainly focus on synthetic iodide and telluride based compounds, naturally occuring layer-
ed materials are vastly overlooked. Here we explore magnetic ordering in iron-rich phyllosilicates. These layered systems are inherently magnetic, ambient
stable and can be thin down to monolayers.
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Figure 1: (a,b) side and (c,d) top views of (a,c) Fe-substituted talc- minnesotaite and (b,d) = Flake
Fe-substituted mica- annite. Presented are relaxed structures obtained from ab-initio cal- ‘%‘
culations. The octahedral units with substituted Fe are indicated by orange colour, and Mg § ‘ / Fe
containing octahedrals are shown in grey. The interlayer species (K) are represented as = 7/ A
purple spheres, Si and Al tetrahedral groups are shown in dark and light blue respectively. - noite
The H and O atoms are denoted as white and red spheres.
Flake
Local magnetic moment .m0 o —
200 400 600 800 1000 3500 3700

Raman Shift [cm'l]
Figure 4: Raman Spectra of thin Fe-rich phyllosilicates showing the (a) fundamental
vibrations (250-1200cm™),and (b) OH vibrations (3500-3700 cm™). Inset present
optical micrographs of the measured flakes on HOPG. Above each each spectrum of
exfoliated flakes, reference spectra of bulk mineral specimen are shown.
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Figure 2: (a) optical micrographs (60 x 60 um?scale bar 10 um) of exfoliated annite. Dash- Layer dependent magneﬁc ordering

ed lines indicate the thin thin flake region and the solid square mark the area from which
the AFM micrographs are presented. (b) AFM topography image of exfoliated flakes (6x6
um?, scale bar 1um, z-scale 15 nm), (c) second-pass phase lag in 180 mT out-of-plane ext- (a) (d), x10°
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Figure 3: XAS spectrum of minnesotaite recorded by photoemission electron microscope spectra obtained from pre-selcted area.
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